The aim of this study was to apply DNA barcoding methods to support conservation efforts of Dalbergia species in Indochina. We used the recommended rbcL, matK and ITS barcoding markers on 95 samples covering 31 species of Dalbergia, and tested their discrimination ability with both traditional distance-based as well as different model-based machine learning methods.We found that ITS yielded the single highest discrimination rate (100%), but due to difficulties in obtaining high-quality sequences from degraded material, the better overall choice for Dalbergia seems to be the standard rbcL+matK barcode, as this yielded discrimination rates close to 90% and amplified well